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AbshcL Projection operator techniques are used to construct a complete set of 
symmetry-adapted excited states for the strongly mupled E @ e Jahn-Wer (IT) system 
from the exact infinite coupling states in the prsence of warping described by a quadratic 
coupling term. The associated ion 
is assumed to occupy a site of tetrahedral Td symmetry such as that occurring at 
substitutional sites in Ill-V semiconductors. The purpose of the calculation is to obtain 
an appropriate set of basis states from which first- and, more particularly, secondader IT 
reduction factors can be calculated by analytical methods as described in the companion 
paper. The states are used in this paper to obtain the energy level diagram for the first 
few =cited states for a chosen value of the warping parameter L. 

AI1 possible phonon excitations are considered. 

1. Introduction 

The energy levels of an impurity ion in a semiconductor are often different from 
those of a free ion due to the coupling of the degenerate electronic states of 
the ion to the vibrations of the surroundings. This difference can be described 
in terms of parameters in an effective Hamiltonian which multiply the original 
electronic perturbations and is generally referred to as a Jahn-Rller (JT) effect. 
These parameters are called reduction factors (RFS). They are termed ‘first-order’ 
or ‘second-order‘ RFS according to whether the perturbation appears in the first or 
second order respectively. 

In some cases, particularly in T@ t2 JT systems, the second-order terms are larger 
than those of first order, and thus the study of second-order RFs becomes important 
in the modelling of such systems. Also, additional terms must often be included in 
the effective Hamiltonian to describe the system. Second-order RFS only occur from 
perturbations of E symmetry in E@e JT systems, such as in uniaxial stress experiments. 

Whereas the E @ e n- system has received much attention in the last 25 years 
(see, for example, the book by Bersuker and Polinger 1989), very few, if any, 
calculations have been directed towards deriving the second-order RFS. Part of the 
problem arises from the general difliculty of actually carrying out the calculations 
and the other difficulty is that most approaches use only numerical methods. Such 
numerical calculations would inevitably involve a large number of excited states and 
the associated problems of convergence. However, an analytical method for studying 
the strongly coupled E @ e IT system, in which a signscant amount of warping is 
present, has been described recently by Badran and Bates (1991), (to be referred 
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to as I). The basic idea of the transformation method, given originally by Maier 
and Sigmund (1986) and Bates et al (1987), is to apply a unitary transformation 
to the Hamiltonian followed by an energy minimization of the main part HI of 
the transformed Hamiltonian. The remaining parts H2 and H3 of the transformed 
Hamiltonian are included via perturbation theoly; f i 3  introduces a set of phonon 
excitations in each well and H2 introduces anisotropy in the shape of the well. 
However, there is an important difference with E 8 e compared to orbital triplet 
systems in that, for the transformation method to work, isolated minima or warping 
must be intentionally introduced into the potential energy surface. This can be 
done in two independent ways; the first, to be used here, is to include a term in 
the ion-lattice interaction which is quadratic in the displacement coordinates Q j .  
An alternative is to include anharmonic vibrations in the basic Hamiltonian for the 
system. It is believed that warping is present in many real systems from a variety of 
causes, all of which can be approximated to the description to be followed here. 

The transformation method is appropriate because an adequate set of symmetry- 
adapted basis ground and excited vibronic states can be derived from it. From these 
states, an accurate analytical calculation of the second-order RFs can be made. A set 
of symmehy-adapted states were derived previously by Dum (1989) for the T @ 
rr system and by Hallam et a1 (1992) for the orthorhombic T @ (e  t b) rr system. 
The object of this paper is to undertake such a calculation for the E Q e rr system. 
The results will be used in the following paper (Badran et a1 1993) to calculate 
accurately and analytically the second-order RFS for an electronic perturbation of E 
symmetry, results of calculations for the hrst-order R F ~  are also reported there. These 
calculations will also be directly relevant in the modelling which we are currently 
undertaking of the effects of uniaxial stress on the optical spectra from the GaPTi3+ 
system. Preliminary experimental results for the latter system have been given very 
recently by Roura et a1 (1992). 

Although the study of reduction factors has been the prime motivation for the 
development in I of this model for E @ e, it does present a new and different 
perspective for the study of such JT systems which continue to be of interest. For 
example, among other recent developments in the theory have been its relation to 
the topological or Berry phase (Berry 1984). This topic has had significant impact 
in some areas of condensed matter physics and quantum chemistry. Its relation to 
the E 8 e rr problem was considered originally in the work of Ham (1987) and 
subsequently by Zwanziger and Grant (1987) for the case when quadratic coupling is 
present. Another example is the study of the dynamics of a pseudo-E Q e JT system. 
This has been considered by Lais and Kraus (1990). 

2. Summary of the general theory 

The basic Hamiltonian for the E@e JT system including linear and quadratic coupling 
can be written as (e.g. as in I) 
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where 

xqud = V,[Ti(Qt- Qi) + zTzQ,Qsl 

V, and V, are the h e a r  and quadratic ion-lattice coupling constan6 respectively, 
(i = 1,Z) are the componenb of the orbital T = f operators defined by 

where IO), I&) are the usual orbital basis states Pj is the momentum conjugate to 
Q j ,  p is the effective ligand mass and wE is the mode frequency. In secondquantized 
form, P j  and Qj become 

Q .  = -,/- h (b,  + b+) 
J 2PW, J 

where bj and bj' annihilate and create excitations of j symmetry, respectively, in the 
usual way. 

In the transformation and energy minimization method for E 8 e given in I, a 
unitary transformation 

is applied to the Hamiltonian 'H, where the aj  are free parameters whose values are 
chosen to minimize the energy of the largest part '7?, of the transformed Hamiltonian 
'7?. Thus the system is k e d  in one of the three wells labelled by the index k = 1, 2, 
3, at positions Q = -aj (k) h. In order to determine the ay),  it is convenient to write 
the ai of equation (25) in polar coordinates (a,,, p )  such that 

where 
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The parameter L is a measure of the relative amount of warping in the potential 
energy surface. For the product V,V, positive, the minima occur with 

p = 0,2r/3,4n/3 k = 1,2,3. (2.8) 

If the product V,V, is negative, the values of p are increased by r / 3  from those 
quoted above. The energies of the ground states in each well are readily found to 
have values given by 

E,  = --EEc+- = -( V E2/8&)4-. (2.9) 

Thus warping has a small effect on the Jahn-lkller energy E ,  as it enters via the 
parameter 4-. 

3. States in infinite coupling 

In the infinite-coupling limit, the ground electronic states will be localized entirely 
within the potential wells in the transformed space. It is straightforward to transform 
them back to the original space by multiplying each state by the operator P after 
substitution of the appropriate value of or?) for that well; this will be written as Pk. 
The results for the ground states are given in I (equation (3.1)); the excited states 
coming from H3 in the transformed Hamiltonian may be obtained in a similar way 
with the result that, for well k, we have 

pg)';e;E;) = v,pg);qE;) (3.1) 

OF' = n f ) l O )  + n!k)le) 

where 9" denotes U excitations of the @-type etc. The orbital statex can be written 
in the form 

(3.2) 

and the phonon state8 as 

where 

with 

(3.3) 

(3.4) 

The values of n;,') are given in table 1. The ground states in each well (as 
given in I) are contamed within the above expressions by putting U = v = 0. The 
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Table 1. Values of the parameters .‘e‘;’ and nik) for the three wells k = 1, 2, 3. 

k “P) nY 
1 1  0 
2 -f  -4312 
3 -: d l 2  

above expressions for the orbital and phonon states are chosen because the symmetry 
associated with each well is readily displayed (e.g. Hallam et a1 1992). 

We note that the untransformed states are naturally vibronic in character via the 
operator U, and they are relatively easy to manipulate. However, for finite coupling, 
they are not good eigenstates of the Hamiltonian as they are not orthogonal to each 
other, nor do they reflect the cubic symmetry of the system. The way forward is to 
take linear combinations of them which are mutually orthogonal and which have cubic 
symmetry. In constructing such cubic states, it is necessary to ensure that the above 
components remain localized within each well (by, for example, having a sufficiently 
large value for V,). The associated energy will need to be less than the height of the 
barriers separating the wells for this approximation to be valid. 

4. Projection operators 

Cubic states of the system can be constructed by using projection operator techniques. 
This procedure has been adopted previously for the ground states of the T c3 JT 
system by Dunn (1988) and by Dunn (1989) for the excited states of the same 
system. Very recently, Hallam et a1 (1992) have used a similar method for the more 
complicated T c3 (e + 5)  JT system. Here we undertake a similar calculation for the 
E@ e IT system. 

The projection operator method generates a set of symmetry-adapted states from 
a set of non-symmetrized states q5 by operating on q5 with a projection operator pg) 
given by (Dunn 1989, Hallam et d 1992) 

where g iS the order of the group, di is the dimension of the representation of 
symmetry r;, R is an element of the tetrahedral group Td and D’(R), ,  is the tsth 
element of the matrix representation of R 

The calculations for E 8 e are simpler than for the other systems considered 
previously because, as the multiple product E @I E @ E @ E..  . gives A,, 4 and E 
only, the vibronic states also have symmetries of AI, A2 and E on1 . It is necessary 

the phonon basis state IO;€;). These can be obtained directly from table 1 of Dunn 
(1989) by writing 0; and E ;  in terms of appropriate Cartesian coordinates In this 
way, projection operators may be deduced exactly as before. Detailed calculations 
show that, if U is odd, states of E and A, symmeay only are obtained and, if v is 
even, states of E and A, symmetry only are obtained. 

to determine the effect of the operations R (namely E, 3q, 6JC, 2 JC, and *C,) on 



1498 S Jamila ei a1 

The symmetry-adapted vibronic eigenstates are found to have the form 
(appropriate to the product VEVz being positive and the wells as given by (28)) 

1-41; U ,  4 = &NI(., v)[ l+  (-I)"] (10;; 0: E E ) + l0;;e:E:) + 10;;e;C;)) 

I A ~ ; ~ , ~ )  = &vz(U,2 ) )p  -(-1y1 (1o:;e:e:) + 1o;;e:a:) + 1o;;e;e;)) 

IE,; U, v )  = &N3(u, v )  (10 ;; e:€:) - 10;; e;€;)) 

(4.2) 
jEB;urv) = $ N 3 ( u , o )  (l0:;S:c:) - 410L;S:!c:) - flo&;O;$)) 

where Nl(u ,v ) ,  N Z ( u , v )  and N 3 ( u , v )  are the normalizing factors. (The form 
above automatically ensures that there are no A, states with II odd and no A2 states 
with v even.) They may be obtained by evaluating overlaps between states of the 
same symmetry associated with weUs 1 and k by noting that 

1 = N , ? ( ~ ,  v)(dI)'; eYE;Idk) ' ;  e;.:) = N~(u,v)(O('~IO(k)')(erCylu:ukle;E;) .  
(43) 

The orbital overlaps are easily evaluated and give 

The phonon overlaps are much more complicated to evaluate as it is necessary to 
expand the operator (U: U,) in the form 

where 
respectively, we have, after much manipulation 

= df) - dk). Thus for two weas k and 1,  with U ,  II and T, s excitations 
I 3 3 

.. ., 

and where 
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with r = 0, c as required. Thus the normalizing factors are given by 

N 3 ( U , U )  = 1/41+ $SEP(U,U,V,U) (4.9) 

and may be readily evaluated for any case. We note that the overlap SE of the 
ground states in any two wells is given by (I) 

(4.10) 

It is readily seen that the above symmetry-adapted states are simpler than the 
corresponding states for both the T @ tz and T 8 (e + tz) ST systems. The restrictions 
on the parameters U and are also considerably simpler than either of the other 
systems; U is unrestricted, and for U the only qualification is that for the A, states 
U is even but for the 4 states U is odd. We note that the approach described above 
is non-adiabatic. Consequently, there is no need to introduce a Berry phase factor 
(Ham 1987) into the eigensmtes (4.2). 

S, = exp ( - 3 ~ ~ 4 :  /2hwE) . 

5. The number of states 

It is often necessary to know the number of vibronic excited states of each symmetry 
for a given number of phonon excitations M(= U + U). Also, in the T 8 tz and 
T@ (e+ b) JT systems, it was necessary to check that the limitations which had been 
placed on the indices characterizing the various vibronic states were correct. For the 
E 8 e  system considered here, the only problem concerns the number of states as the 
restrictions on U and U are trivial. 

Such calculations can be undertaken by constructing a reducible representation of 
the system which includes both the orbit and oscillator spaces. The required reducible 
representation is given by 

rred = rob 8 r p  

rLM) = re@ re@ re@.  . . ( M )  .. . @ re 

rd = A, + E. 

X" = 3 

X,d3Cz) = 3 

x , d J C d  = 1 

x,+PJCd = 1 

(5.1) 

where rLM) is the symmetric part of the direct product of the oscillator states: 

(5.2) 

and rob is the reducible representation from the three electronic basis states where 

(53) 

From the standard character table for Td, the characters for rob are found to be 

x(8c3) = 0 

(5.4) 
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where J represents inversion. 

recurrence relation (Heine 1960) 
The characters of an operation R E Td in the riM’ representation is given by the 

x!~)(R) = ;[X(R)X(~-’)(R) + x(RM)I. (5.5) 

Substituting M = 0, 1, 2,. . . gives the required characters of the reducible 
representation, namely (Hallam et a1 1992) 

M even 

M even 
{i M o d d  

xiM)(JC4) = 

xLM)(J%) = {’ 0 M odd 
M / 3  integral 
( M  + 1)/3 integral 

-1 ( M  + 2)/3 integral. 

With these resulb and the reduction formula 

the number of times q,  that different irreducible representations rP  appear in the 
reduction rrsd is obtained. Substituting the characters from (5.4) and (5.6), and using 
also the observation that the number of vibronic excited states of symmetry p equals 
the number of times the irreducible representation r, appears in rrsd multiplied by 
the dimensionality, the number of vibronic states of a given symmetry is given by the 
following 

! (M + 2 1 4  @ ; M A ,  @ ( M  + 1)E for M even 

for M odd. + ( M  + l)Ai$ $ ( M +  1 ) A 2 @ ( M  + l )E ( 5 4  

The various possible states for A4 = 0-4 are illustrated shown in table 2. This 
table clearly shows the differences between even values of w (giving A, states) and 
odd values of w (giving A, states). 

6. Excited-state energies 

The energies of the cubic symmetry-adapted excited states can be calculated by 
evaluating the matrix elements of 31 between the various states. Such calculations 
require the evaluation of the mavix elements between the states (3.1) in inIinite 
coupling. Such matrix elements are of the form 

(OW’ ; 07 cf * Ixpg)’;e;E;) = (O~);ef~~Iu:31u,iOg);e;c;). (6.1) 
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Table 2. Arrangement of the symmetry-adapted stater with M = 0, 1, 2, 3, 4 

M U uwm u c d d  States lbtal 

2 0  0 
2 1 -  1 

0 2  - 
3 0  - 
2 -  1 

3 1 2  - 
0 -  3 

4 0  - 

1 -  3 
0 4  0 AiCBE 



x P(u,u  + l , V ,  0 + 1) + % / G P ( u , u  - l , V ,  0 - 1) 

+J-P(u,u+l ,  2 ) )  v - l ) + J q E Z p ( u ,  u- l,V,V+l)l . 1 
(6.5) 

Wues for the energies of all cubic excited states can be calculated directly and simply 
by substitution into the expressions (6.4) above. The results for the energies relative 
to that of the E vibronic ground state are shown in figure 1 for the states with M = 0, 
1 and 2 t a h g  L = 0.1. For values of KE/ (bE)  = 5 and higher, the states group 
around the energies Mhw, as expected. They do not become degenerate at exactly 
Mh, due to the presence of the warping parameter L. 

For small values of KE/(hwE), the non-orthogonality between the states becomes 
increasingly important and explains why states of the same symmetry appear to cross 
each other. Note that the graphs cut the vertical axis at non-integral values of hw, 
because of the presence of the warping parameter L as well as on account of non- 
orthogonality. In principle, a GramSchmidt procedure can be applied as in the case 
of T@ t, (Dunn 1989) and the apparent crossings of states of the same symmetry will 
no longer occur. However, as the calculations, although straightforward, are quite 
lengthy and as such complications will not serve any useful purpose in the present 
work, they will not be undertaken here. 

In the above calculations, the contributions from the Hamiltonian '?&, which 
generates anisotropy in the shape of the potential wells, have been neglected. Its 
inclusion greatly complicates the basis states (see I for the effect on the ground 
state) and it will have only a small effect on the energies. The physical arguments 
conceming anisotropy and non-orthogonality given for the T @ JT system by Dunn 
(1989) will also apply to E @ e. 
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ENERGIES OF EXCITED STATES 

4 ,  

"0 1 2 3 4 j 

KEmw 
Figure 1. Energies of the states (4.2) as a function of Ke in unils of E a ,  with M = 0, 
1, 2 and L = 0.1. 

7. Conclusions and discussion 

The method of projection operators applied to the infinite coupling states obtained in 
the unitary transformation method has enabled us to obtain expressions for symmetry- 
adapted vibronic excited states for the E @ e JT system in the presence of warping. 
The main objective of this work is to enable us to proceed with the calculation of 
RFS for this system in Badran et a1 (1993). However, the states thus obtained have 
also enabled us to calculate the energy spectrum for the system. It is difficult to 
compare these results with other calculations (e.g. O'Brien 1964, Sakamoto 1982) not 
only on account of the different ways of expressing the results but also because the 
ranges of validity of the different methods have little common ground. Also, much of 
the literature is concerned with an analysis of the E @ e JT problem without warping 
which cannot be studied by the transformation method. Nevertheless, the general 
form of the energies obtained by ourselves and O'Brien (1964) and Sakamoto (1982), 
for example, are very simiiar when correspondence is possible. 
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